Ứng dụng AI trong nhà máy
1. Khái quát chung
- Chi phí sản xuất sản phẩm có thể rất tốn kém khi sản xuất gặp sự cố hay dừng máy, sản xuất là một quá trình phức tạp cho những doanh nghiệp không có công cụ và nguồn lực phù hợp để phát triển sản phẩm chất lượng.
- Trong thời đại thịnh hành trí tuệ nhân tạo và máy học đã trở nên phổ biến hơn trong việc sản xuất và lắp ráp các mặt hàng, giúp giảm chi phí và thời gian sản xuất. Trên thực tế, 40% của tất cả các giá trị tiềm năng có thể được tạo ra bởi các phân tích ngày nay đều đến từ các kỹ thuật AI và Machine Learning. Trong đó Machine Learning có thể chiếm từ 3,5 nghìn tỷ đến 5,8 nghìn tỷ đồng giá trị hàng năm – theo dự báo của Mckinsey. Mấu chốt là các chiến lược tăng trưởng hàng đầu liên quan đến việc tích hợp các nền tảng machine leaning tạo ra những hiểu biết để cải thiện chất lượng sản phẩm và năng suất sản xuất. Machine Leaming giúp tạo ra sản xuất thông minh hơn, nơi robot có thể đặt các vật phẩm của chúng cùng với độ chính xác chi tiết, các phân tích có thể xác định các tình huống sắp tới và các quy trình tự động có thể phát triển các đầu ra không có lỗi.
- Dữ liệu được thu thập từ các sản phẩm và quy trình sẽ được đưa vào mô hình ML để cải thiện hơn nữa quy trình sản xuất thông qua một vòng phản hổi liên tục Digital Twin. Tương lai sẽ có một loạt robot và máy sẽ biến đổi các hoạt động công nghiệp, lực lượng sản xuất sẽ cần được bổ sung để làm việc cùng với các thiết bị mới được phát triển, trong khi các máy móc truyền thống sẽ yêu cầu trang điểm để phù hợp với ngành. Để có được những hiểu biết có thể hành động chính xác đòi hỏi một lượng dữ liệu đáng kế trong thời gian thực để hiểu được sự bất thường trước khi hệ thống bị lỗi. Machine Learning là một yếu tố chính của Bảo trì Dự đoán tiên tiền bằng cách xác định, theo dõi và phân tích các biến hệ thống quan trọng trong quá trình sản xuất. Thông qua Machine Learning, các nhà khai thác có thể được cảnh báo trước khi hệ thống bị lỗi và trong một số trường hợp không có sự tương tác của nhà quản lý và tránh thời gian ngững hoạt động không có kế hoạch tốn kém.
2. Cải tiến quy trình sản xuất
- Một trong những điều đầu tiên xuất hiện khi nghĩ về các giải pháp dựa trên AI&ML là cách chúng có thể phục vụ các quy trình hàng ngày trong toàn bộ chu trình sản xuất. Bằng cách sử dụng công nghệ này, các nhà sản xuất có thể phát hiện tất cả các loại vấn đề trên các phương pháp sản xuất thông thường của họ.Bằng cách kết hợp các công cụ machine learning với Internet vạn vật, các công ty đang xem xét sâu hơn về hậu cần, hàng tồn kho, tài sản và quản lý chuỗi cũng ứng của họ. Điều này mang lại những hiểu biết có giá trị cao, phát hiện ra những cơ hội tiềm năng không chỉ trong quá trình sản xuất mà cả trong việc đóng gói và phân phối.
- Tại tập đoàn Siemens của Đức, nơi đã sử dựng mạng lưới thần kinh để giám sát các nhà máy thép của mình nhằm tìm kiếm các vấn đề tiềm ẩn có thể ảnh hưởng đến hiệu quả của nó. Thông qua sự kết hợp các cảm biến được cài đặt trong thiết bị của mình và với sự trợ giúp của đám mây thông minh của riêng mình (được gọi là Mindsphere ), Siemens có khả năng giám sát, ghi lại và phân tích từng bước liên quan đến quy trình sản xuất. Động lực này là cái mà một số người gọi là Công nghiệp 4.0, một thương hiệu của thời đại sản xuất thông minh hơn.